Manganese enhanced magnetic resonance imaging.

نویسندگان

  • Jung Hee Lee
  • Alan P Koretsky
چکیده

Manganese is an essential metal that participates as a co-factor in a number of critical biological functions such as electron transport, detoxification of free radicals, and synthesis of neurotransmitters. Like other heavy metals, high concentrations of manganese are toxic. For example, chronic overexposure to manganese leads to movement disorders. In order to maintain this balance between being an essential participant in enzyme function and being a toxic heavy metal, a rich biology has evolved to transport and store manganese. Paramagnetic forms of manganese ions are potent MRI relaxation agents. Indeed, Mn(2+) was the first contrast agent proposed for use in MRI. Recently, there is renewed interest in combining the strong MRI relaxation effects of Mn(2+) with its unique biology in order to expand the range of information that can be measured by MRI. Manganese Enhanced MRI is being developed to give unique tissue contrast, assess tissue viability, act as a surrogate marker of calcium influx into cells and trace neuronal connections. In this article we review recent work and point out prospects for the future uses of manganese enhanced MRI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Bias in Contrast Agent Concentration Measurement on Estimated Pharmacokinetic Parameters in Brain Dynamic Contrast-Enhanced Magnetic Resonance Imaging Studies

Introduction: Pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely applied in tumor diagnosis and treatment evaluation. Precision analysis of the estimated PK parameters is essential when they are used as a measure for therapy evaluation or treatment planning. In this study, the accuracy of PK parameters in brain DCE...

متن کامل

Magnetic Resonance Imaging Modalities with

Abbreviations: BBB: Blood Brain Barrier; Ca: Calcium; CT: Computed Tomography; EM: Electro-Magnetic; EMA: European Medicines Agency; FDA: (U.S.) Food And Drug Administration; Fmri: Functional Magnetic Resonance Imaging; Gd: Gadolinium; GI: Gastro-Intestinal; IV: Intra-Venous; Mn: Manganese; MEMRI: Manganese-Enhanced MRI; Mn-DPDP: Chelated Manganese Nanoparticles; MRA: Magnetic Resonance Angiogr...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI.

This magnetic resonance imaging (MRI) study describes mapping of the habenulo-interpeduncular pathway in living mice based on manganese-induced contrast. Six hours after intracerebroventricular microinjection of MnCl2, T1-weighted 3D MRI (2.35 T) at 117 mum isotropic resolution revealed a continuous pattern of anterograde labeling from the habenula via the fasciculus retroflexus to the interped...

متن کامل

Magnetic resonance imaging of the retina: from mice to men.

This mini-review provides an overview of magnetic resonance imaging (MRI) applications to study rodent, cat, non-human primate, and human retinas. These techniques include T(1) - and T(2) -weighted anatomical, diffusion, blood flow, blood volume, blood-oxygenation level dependent, manganese-enhanced, physiological, and functional MRI. Applications to study the retinas in diabetic retinopathy, g...

متن کامل

Manganese-Enhanced MRI: Biological Applications in Neuroscience

Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn(2+)) enhances MRI contrast in vivo. Due to similarities between Mn(2+) and calcium (Ca(2+)), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca(2+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current pharmaceutical biotechnology

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2004